A refinement of Betti numbers and homology in the presence of a continuous function. I

نویسنده

  • Dan Burghelea
چکیده

We propose a refinement of the Betti numbers and of the homology with coefficients in a field of a compact ANR X, in the presence of a continuous real valued function on X.The refinement of Betti numbers consists of finite configurations of points with multiplicities in the complex plane whose total cardinality are the Betti numbers and the refinement of homology consists of configurations of vector spaces indexed by points in complex plane, with the same support as the first, whose direct sum is isomorphic to the homology. When the homology is equipped with a scalar product these vector spaces are canonically realized as mutually orthogonal subspaces of the homology. The assignments above are in analogy with the collections of eigenvalues and generalized eigenspaces of a linear map in a finite dimensional complex vector space. A number of remarkable properties of the above configurations are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A refinement of Betti numbers and homology in the presence of a continuous function. II

This paper is a sequel to [2]. We propose a refinement of the Novikov-Betti numbers (w.r. to a specified field κ) of a pair (X, ξ), consisting of a compact ANR X and a degree one integral cohomology class ξ, in the presence of a continuous angle valued map representing the cohomology class ξ, and a refinement of the Novikov homology of the pair. The first refinement consists of finite configura...

متن کامل

A refinement of Betti numbers and homology in the presence of a continuous function II (the case of an angle valued map)

This paper is a sequel to [2]. We propose refinements of the Novikov-Betti numbers of the Novikov homology (w.r. to afield κ) of a pair (X, ξ) consisting of a compact ANR X and a degree one integral cohomology class ξ, in the presence of a continuous angle valued map representing the cohomology class ξ. The first refinement consists of finite configurations of points with multiplicity located i...

متن کامل

A class of Artinian local rings of homogeneous type

‎Let $I$ be an ideal in a regular local ring $(R,n)$‎, ‎we will find‎ ‎bounds on the first and the last Betti numbers of‎ ‎$(A,m)=(R/I,n/I)$‎. ‎if $A$ is an Artinian ring of the embedding‎ ‎codimension $h$‎, ‎$I$ has the initial degree $t$ and $mu(m^t)=1$‎, ‎we call $A$ a {it $t-$extended stretched local ring}‎. ‎This class of‎ ‎local rings is a natural generalization of the class of stretched ...

متن کامل

On a special class of Stanley-Reisner ideals

For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where  $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...

متن کامل

Finiteness of rank invariants of multidimensional persistent homology groups

Rank invariants are a parametrized version of Betti numbers of a space multi-filtered by a continuous vector-valued function. In this note we give a sufficient condition for their finiteness. This condition is sharp for spaces embeddable in Rn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017